5. Relation between flow and mass fields

This section is an introduction to the dynamicdarfje-scalemotions in the extra-tropical
atmosphere and ocean. Important simplifications are possible on large space and time scales.

The main goal is to make potential vorticity (PV) a useful dynamical tool. The ordinary
vertical vorticity { fully determines the rotational motion in the horizontal plane, but it is not con-
served.

In order to determine the flow from the distribution of PV, which is conserved, one needs a
second relationship between “motion” and “mass”. The various choices, called “balance approxi-
mations”, eliminate gravity-inertia waves as a side-effect. The horizontal divergence involved in
gravity waves becomes a “slave” to the geostrophically balanced motion.

5.1 Scale analysis

For simplicity, we proceed from ttehallow-water system

duw/ dt = fv—gh (5.1)
dv/dt = —fu—gtg, (5.2)
dh/dt = —(H + h)(u,+v,). (5.3)

Hereh refers to the displacement of the free surface from its restingHelelthis system,
“mass” refers directly td(x, y, t) . The Coriolis effect is included.

Consider “long waves” in the mid-latitude troposphere, with global wavenumber less than
10 (wavenumbers 1, 2 or 3 are “ultra-long waves”). We will look for the leading-order behavior of
disturbances with this scale, using some additional estimates:

L --- horizontal length scale — $on

H ---depth scale — om

V --- wind speed — 10 m/s

Cc --- phase speed - 10 m/s
fo --- angular frequency of earth— fat

g --- gravitational constant — 10 m/s

a --- radius of earth — 10m
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The first four scales are appropriate for the extratropical atmosphere. For the ocean, the horizontal
length scale is an order of magnitude smaller, while the velocity scales are usually two orders of
magnitude smaller.

We normalize coordinates and dependent variablas asVu etc, wherel is the non-
dimensional variableThe time scale is a derived paramelers L/c . ¥Hn@omentum equa-
tion 5.1 becomes

V2ge e os 0, 987 fo -
TE\_/UT+UU>~<+VUB7D+ Th;(— fOVf_OV =0, (5.4)

whered has been introduced as the scalb.for

Now divide 5.4 byf,V to reach

N em e ~  f .
ROEVEU; + UUg, +vu§H+ Ah;(—f—ov = 0. (5.5)

Here Ro =V/( flol-) , the “Rossby number”, aAd= 89/ (f,LV) . From the dimensional esti-
mates,Ro= 10~ (even smaller for the ocean away from boundary currents). Therefore, the last
two terms in 5.5 are in approximate balance and we should setl by makindg ,LV/g

This says that, at the scales of intersgist of the pressure gradient is not involved in changing
the velocity

Taylor-expanding the Coriolis parameter produtgs, =1+ B(y—Y,) , Where
B=(L/a)cotd, andB, andy, are the latitude ageposition at whichf = f, . The expansion
can be justified only iB « 1 . Substituting dimensional estimates for the atmosphere -- or oceanic
boundary currents and eddies -- we Bet1/ 10 . To proceed formally, we expand all the vari-
ables in the manner of

U = {i,+Roll, + ROT, + ... (5.6)

and group together terms in each equation according to their power of Ro. With a little luck, this
will yield a set of simplified forecast equations with nice properties such as an energy principle.

5.2 The geostrophic wind

If B is of the same order as Rbe lowest-order terms (those with factor of Ro) in 5.5
are

dho/ 0% -V, = 0. (5.7)
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The corresponding result from tggnomentum equation is
dho/ 0y + iy = 0. (5.8)

The system at this order is purely diagnostic. The lowest-order horizontal velocity in 5.7-5.8 can
be expressed ag; = zx [Ohg , or with dimensions restored,

_ 09
V, = Df—OHzx Oh. (5.9)

The subscript “g” is introduced for “geostrophic”. This is actually an approximation of the geo-
strophic velocity based oB « 1  (otherwise the Coriolis parameter is not constant). In this model,
' IS non-diyergegt2~with streamfunctign = (g9/ fy)h . The geostrophic vorticity can be
expressed a&p = [0 hg using the 2-D Laplacianid)r: 02y

The non-dimensional form of 5.3, usiog= V| is
é(F1~+GF1~+\7F1~) = —%Héﬁ%&ﬂ%) (5.10)
H t X y - H X y . .
SinceD on the rhs is at most O(RoO) fxut is order-unity, we concludé/lht is at most of

order Ro. The standard scaling feiis based on mass continuity, + vy = -w/(H+h) |, rather
than the kinematic free-surface conditioitn/ dt = w . THs= V(H/ L) is standard. With
this choice, the vanishing of the horizontal divergence at lowest order then means that

W, =0 (5.11)

andw = Row; + ... .

In spherical coordinates, the lowest-order velocity is

h

u = _d90oh oh
9 = "Of Chao

_ 090
and Vo = 5 _FacosBon’ (5.12)

which, of course, is still non-divergent.

5.3 Quasi-geostrophic shallow-water model

For a time-dependent system, now consider the first-order (one factor of Ro) terms in the
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momentum equation:

d—‘%vo = —zxV;—0Ohy—b(¥-¥,)zx Vo, (5.13)

wheredo/dNt =9/0t + \70 [0 andb = B/Ro . After eliminatinf;l by cross-differentiating
components, we have

do"’ ~ ~
FC0 = Wy —bi,. (5.14)
Here we have also introduced the first-order terms of mass contiwity: -0 OV, . Mass con-

tinuity also allows us to write the leading-order part of 5.10 as

d,

d = RiR0%W1, (5.15)

r—|-1 jl

with Ri = gH/yZ, the “Richardson number”. Sinu;;@ aﬁ{@ each have a known diagnostic
relationship tohg , 5.14 and 5.15 form a closed, time-dependent system for w,and . This is the
so-called “quasi-geostrophic” system.

Eliminatingw, in 5.14-5.15 yields the quasi-geostrophic, shallow-water form of Ertel's
potential vorticity equation:

do 3 ~ 2=
d—~t(10+b>’—f ho) = O, (5.16)

wherer?=Ri"Ro 2 . This statement expresses ¢ conservatlon following the geostrophic motion,
of the quasi-geostrophic potential vorticity, = f + {o—r ho , Whére= Ro 1y b(y- yO) , the
linearly varying planetary vorticity. The dimensional formggf , in units of vorticity, is

f2
dg = fo+PBy+ BDZ——ELD (5.17)
wherey = fgh . The conservation statement 5.16 may be written
0
dgqg—a /0t +J =0 5.18
T - qg (LIJ! qg) - ' ( . )

with dg/dt =0/0t+V [T andJ(A B) = AB,—AB, . Since 5.18 involves a single unknown,
Y, the goal of finding a closed dynamical system involving PV has been achieved. A system in
which ) can be obtained froop  alone, as in 5.17, is said to possess an “invertibility principle”.

From 5.16, the ratio of the “mass” perturbation to the relative vorticity is of the ordef of
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in the expression for potential vorticity. This is also the ratio between available potential energy
and kinetic energy in a balanced model The nondimensional parameter , called the “Burger
number”, may be writtem® = L%/LZ% by defining, = /gH/ f, , the so-called Rosstajus of
deformation We infer from 5.16 that when the disturbance is small compared to the radius of
deformation, it is mainly a velocity perturbation, and absolute vorticity is approximately con-
served. When the disturbance scales are large compared to the Rossby radius, the height field is
nearly conserved or else balanced mainly by changdametaryvorticity.

As long as the divergence is O(R0), the large-scale “limit” is still subject to the condition
L = Lg. However, another balanceice(, nearly geostrophic) system is possible for extremely
large-scale disturbances if the divergence appears at a lowericedan,the geostrophic velocity.
PV conservation in this system is suggested by removing the relative vorticity from (5.16). How-
ever, when divergence is O(1), we don’t expect mass continuity or the expression for PV to “lin-
earize”, because thew=H . The forma@f that arises in this situation is mentioned at the end of
the section.

Eliminating h, from 5.14 and 5.15 is not very productive, but eliminadingt yields a
useful diagnostic equation:

(O =), = —r2Vo (Lo +bY). (5.19)

On larger scales than the deformation radius (L ), the response to vorticity advection is vortex
stretching (first term on rhs of 5.14). In this I|m|t our scaling keeps  order-unity even though
ohg/dt = 0. On smaller scales thdn, , tXr ) vertical motion keeps the height in geostro-
phic balance without significantly stretchlng the planetary vorticity.

Another type of balanced flow occurs in the presence of external forcing wkhen . This
assumption impliet =a and since the external deformaiton ragjus |s at least as large as

we haveb » r2 as well. If the forcing consists of a wind stré¥s,dt = H (T( (y)) ,asin
an ocean basm, then 5.16 becomes
Bv, = H 'O 0O, (5.20)

where the rhs is the curl of the wind-stress vector. This relation is knov@vesirup balancdn

regions where surface westerlies increase towards the nesthl [ = —ot/ 0y<0,5.20

predicts a steady southward drift in the basin. In both hemispheres, Sverdrup drift is equatorward
if the surface wind is westerly. Mass is conserved by means of a viscous boundary current along
the western side of the basin.

In a more realistic model with vertical structure, affects the deep ocean indirectly
through a vertical motionlh/ dt imposed at the mterface between the inviscid deep layer and the
viscous surface layer. Thus, we kdaepl |, but slqge IS now based iotethal deforma-
tion radius, we can hawve  large enoughtfarr . Then siié¢ = r°Ro is order-unity,
mass continuity remains nonlineath/ dt = —(H + h)D . Moreover, the horizontal divergence
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is primarily associated withlanetaryvortex stretching by thgeostrophidlow:

D=0V, = —ng/f , Wheref = df/dy (the velocity is divergent at lowest order). We now
havedgh/ dt = (H+ h)ng/f . This may be rewritten as a statement of conservation, following
the geostrophic motion, of the quantity

Gpg = fH/(H +h). (5.21)

Evidently, gp is the PV for this system, the so-called “planetary geostrophic” model (shallow-
water version). As in the quasi-geostrophic large-scale “limit”, there is no contribution from the
relative vorticity. Since the geostrophic velocity is not expressible in terms of a streamfunction,
the invertibility principle must be writteh = H(fq™ 1) oy = (gH/ f)O(fq ™)

The second inequality used to obtain 5.20 is a “rigid-lid” approximation. It does not exclude the possibility of hori-
zontal pressure gradents at the top, “under the lid”. To be consistent with mass continuity, the column-integrated geo-
strophic divergence under a rigid lid must be cancelled by the ageostrophic divergence. Most of the ageostrophic
divergence is confined to the viscous surface layer (see section 5.5). However, because the geostrophic flow diverges
on the scale of the earth’s radius rather than the forcing scale, the full-column geostrophic mass transport tends to
dominate the ageostrophic mass transport (see problem 5.4).

5.4 Thermal wind and baroclinicity vector

In pressure coordinates, the geostrophic wind is

V, = izx o, (5.22)
97 1,

with @ = gz (cf. 5.9, in whichg = gh ). We postpone the development of PV dynamics for this
model to the end of the chapter. For two pressure lepgls,p, , defittreethwal wind

VT = Vg( pa) - Vg( pb)
(5.23)

1.

o zx (e, — @)
0

The differencep, — @, Iis called thticknessFor an ideal gas, the hydrostatic relation gives

Q- = JzRTdIogp, so that

b
Vq = f—Fsz o Tdlogp. (5.24)
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et
S,

The “thickness” is a streamfunction for the geostrophic vertical shear Wégtor, . In the
northern hemisphere, the thermal wind is directed with cold on the left and warm on the right. In
the diagram below] represents the log-average in the layer whe¥g,  is definkuthis case,

Vg is becoming more westerly and less southerly with height.

The baroclinicity vector can be expressed in terms of the geostrophic wind and the thermal
wind as follows.

Horizontal component of the baroclinicity vector:

_ s, 0
Sy = -zx 52(0( 0nhp) -
oV, oV, (5.25)
0z op
(Subscript h” refers to horizontal derivatives at constaxijt The rhs represents forcing of circula-
tion about a horizontal axis. If velocity is entirely geostrophic, new circulation all goes into the
planetary part o€, (material circuits are being tilted relative to the equatorial plane by the

shear). This allows the flow to be steady.

Vertical component of the baroclinicity vector:

S; = —z{0ha x Oyp)

= z[Myex OylogT
, pP> =p00 (5.26)
fo. oV,

- 0 % ovg
g 9 o0z

Here we have used the hydrostatic relation to intro@&t‘ge/az . Simplest cases:

(2) Barotropic:avg/az =0 .Thers, =0 an8; =0

(2) Equivalent barotropicavg/az parallel ¥, .Th& =0

In the diagram below, we assunig>0 . The circulation tendency (non-Boussinesq) is cyclonic,
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thatis,5;>0 .

LOW

5.5 Ekman layers

The lowest-order system has no predictive value, but we can use it to analyze balanced
flows. We will consider a balance involving the Coriolis force, pressure-gradient force and verti-
cal momentum diffusion -- called Ekman balance.

We first need to summarireixing-length theoryThe velocity has variability down to a
minimumm “resolved” time scale. Shorter-time-scale motions (“turbulent eddies”) produce
momentum forcingk, via unresolved momentum fluxes or “Reynolds stresses”. For example, in
thex-equation,

Fy = —%D Qpu'V), (5.27)

where the prime refers to the short-time-scale fluctuations and the overbar means time averaging.

Most of the turbulent eddy flux convergence near a horizontal boundary is in the vertical:
F=—(1/p)d(pV'W)/0z. (5.28)

We estimate the anomaly by assuming momentum transport over a typical vertical displace-
mentl' ; we estimate/ by assuming unit aspect ratio for the turbulent eddies. Thus,

vi= 2 and wyr =[OV
0z

- (5.29)

This leads to
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_10,0vQ

= S5Paz0 (5.30)

whereA = pl'2|6V/6z| , a scalar quantity which should depend only on distance to the surface.

Now we have the Ekman-layer equationsuf@ndyv:

~fo(v=Vy) = F—l)(AuZ)Z. (5.31)
folu—uy) = %(sz)z. (5.32)

These are written ir-coordinates and with the “turbulent eddy diffusion” included as forcing.
There is still no predictive content.

To get a solution, assume that nothinguandv varies withz in the Ekman layer. In the
case wher& vanishes at the surface (“no slip”at= 0 ), the solution is

V = Vy—exp(-y2)R(-y2)V (5.33)

wherey = ,/fop/(2A) andR(a) isthe matrix that rotates vectors counterclockwise through an
anglea . The upward-decaying solution is chosen southat matchengn t = at

y Ekman spiral

p, €Arrows showlayer-averaged
velocity, PGF, CF and friction

P1
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The deviationv -V has a cross-isobaric component (the ageostrophic “Ekman drift”) that is
mainly to the left 01’\/g : friction weakens the rotational constraint and allows the pressure gradi-
ent to do some work (against the friction).

The total ageostrophic mass-flux is

(o]

R(-V4)V,
M = pI(V—Vg)dz = p——
0

J2y (5.34)

- _p 5

= _2y(V9 —-ZX Vg) :
Hence, from an integral of the mass continuity equation, the vertical mass flux out of the Ekman
layer is

pw(e) = -0M = 27, (5.35)

sinceV, is non-divergent. This is used dswaer boundary condition for the frictionless flow far
above t?we boundary.

5.6 Thermodynamic scaling for the atmosphere

Next we begin developing the PV dynamics for a hydrostatittinuously stratified
atmosphere. Scaling the continuity equation in pressure coordinates, we get

\E/(INJ;(+\~/§,) +V—F\>/5’b -0, (5.36)

whereW s the scale fowo . The variables are non-dimensional and no bigger than order-unity.
Consequently, we should ug¢ = PV/ L . However, as in the shallow-water model, the non-
divergence of the geostrophic velocity will make the resultong  of order Ro.

Since we have@@/dp = —a from hydrostatic balance, conservation of entropy should be
rewritten in terms ofx

do+ v -
dta + & Dpw =3 Ta, (5.37)
whereQ = cpTdIog s/ dt , the diabatic heating. With further use of the hydrostatic relation, this
can be put in the form
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—/ 0 — —QO% = =
dta > AW S Tcx, (5.38)
g p
szleredh/ dt is the material derivatiexcludingvertical advection. Recall that
N® = godlog6/0z.
We use hydrostatic balance to scale the specific voldme: ®/P for the horizontal

variations ofa andA, = gH/P for the horizontally-averaged . Note tha#t\, = 6/H ,
whered = ®/g is the scale for the vertical displacements. Alsm@t be a typical valNé of
Then 5.38 becomes

~

dhC( . 2% .~
ROF—RIRO Sw = RK=, (5.39)

pelP Ok

with K =R/ ¢,. The variables are non-dimensioné = Q/( fOVZ) é;: Nzaz/(NgAg) ]and
the new non-dimensional parameter is

Ri = NoH?/ V2, (5.40)

the Richardson number.

Over theztropospljeré, varies by about 10%. Hédf«;e 10772 and
Ri = 10"=Ro . Sincew is of order Ro, the terms on the |hs of 5.39 are of the same order. The
first-order equation is

~

dolp =~ ..~ Q
—_— - W, = K=, 5.41

il O 2 (5.41)
whereéo is the horizontal averageR?»fRozé . Departures from the horizontal average are
neglected in the vertical advection because geostrophy keeps the vertical displacements of order
Ro compared téd  and therefofe’ Ay IO(R0) . As in the shallow-water model, the time deriv-
ative uses only the lowest-order (geostrophic) velocigy:dt = /9t + V¢ [1] , Where

Vo = (%o Pox)

The result in 5.41 demonstrates that the vertical thermodynamic structure of the extratrop-
ical troposphere is not controlled entirely by diabatic forcing and small-scale processes (e.g., con-
vection), but by a combination of such effects and internal large-scale dynamics. Without the
diabatic forcing, 5.41 is analogous to 5.15.

5.7 Quasi-geostrophic baroclinic model in isobaric coordinates

The first-order (one factor of Ro) terms in the momentum equation are:

dp - . . o -
a%vo = —zxV1—0@ —b(y—Y5)Zx Vo, (5.42)
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whereb = R_wo . Eliminatap; by cross-differentiating components:
dOZ _ 0%, by (5.43)
i’ " 9p o |

SinceZONand\N/O ~have a known relationshipfﬁp , 5.43 together wiEh 5.41 and the hydrostatic
relation, @op = —0, , forms a closed, time-dependent systenpgor «and . This is the quasi-
geostrophic system for a continuously stratified fluid.

The dimensional form of the quasi-geostrophic system (5.43 and 5.41), without forcing:

2 2
6D(p+u6Dcp d0%pn fzaoo_

a2
S U 2, %‘fo|3+ 5y O (0gp = 0. (5.44)
o@eq, , 9@, ,, 9 [@cpm _
3tCopal " Yeaxtapa  Veayap T > = O (5:45)
Recall thatp is the deviation from a horizontally averaged spéi®), , and that

S(p = —adlogB/dp, the mean “static stability” of the atmosphere.

(1) Eliminatingw Yields a version of Ertel's potential vorticity equation:

d
Y972 20 oo (o0
dt[D b foapESGpD} Bax' (5.46)

This expresses conservation, following the geostrophic motion, of the “pseudo-potential vorti-
city”,

_ 0 o
0= fo+ By +{y+ fogﬁ%a—‘gg. (5.47)

This quantity is subtly different from the “potential vorticity” in that the static stabiliig differ-
entiated. Otherwise, there would be linearizedical advection in 5.46. Using 5.46-5.47 makes
the vertical velocity technically extraneous in a quasi-geostrophic forecast. Like 5.16, the result
5.46 involves a single unknown, implying a closed dynamical system.

(2) Eliminatingd/ 0t yields the diagnostic equation:

0, foo°0 _foo ) 0 90
BID "5y = SaplVa Tl TNl + g a0 v, Op} (5.48)

This is analogous to 5.20 and is known asoifmega equatian
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Problems

5.1 Show that in a hydrostastic, Boussinesq, planetary-geostrophic model, the potential
vorticity is qpg = fdp/dz, analogous to 5.21. What is the invertibility principle in this model?

5.2 A certain quasi-geostrophic shallow-water flow oftplane has

Vg = UX+Vsin(kx)y attimet = 0, wher&k U an® are constants.

a) Obtain the height field as a function of time by substituking- ct) for the phase. How does
the phase speerl behave in the lirkitg, « 1 lahd» 1

b) In the same two limits, describe the particle trajectories, including the vertical displacements at
the free surface.

5.3 Consider a 2-layer ocean in a rotating frame Witk const 3 = 0 . The depsity
of the upper layer is uniform and smaller than that of the lower lgyer . The surface of the ocean
is always flat, and the interface between the layers igfiglly. Both layers have an initial depth
H.

g y
z=0
N
P1 _ N N
P2 ?
z=-2H A%
Y
a) The upper layer is adjusted to a steady wind stress sual( ) = ug(y) . Find the verti-
cal profile ofu andv in this layer £H <z<0 ) subject to the Ekman equations:
—fov = Ku,,
fou = Kv,,.

TakeK to be constant and assume that the total velocity decays away from the surface.

b) Letug = UcodI(y —yg)] - Using mass continuity, deduce the vertical velocity at the interface.
Assume thaH is much greater than the depth of the Ekman layer. Use this value to obtain the
height perturbatiomn of the interface as a function of time and latitude.

c) Assuming that the lower layer is not directly subject to frictional forcing, write dowy the
momentum equation for the lower layer in terms of the height gradlefity . Assume hydro-



-5.14-

static balance.

d) Assuming that geostrophic adjustment is fast compared to adjustménts in , obtain the zonal
velocity u(y) in the lower layer as a function of time. As a function of the meridional scale of the
forcing, how long does it take for this lower-layer flow to become as strong as ~ ?

5.4 Consider a homogeneous ocean over a flat bottom forced by a purely zonal wind
stresst(x, y, z= 0) = 1,(y)X . Make the rigid-lid approximatiom,= 0 zt 0

a) Show that the Ekman “pumping” is

_ diydy .
Ve ST Tl
whereT =T - fvgHeg andz = —Hg is the depth where the zonal streg3, , vanishes.

w=20

A

b) Show that this pumping is dynamically consistent with the residual flow in the inviscid interior
(—H <z<-Hg) given by

Vg(H—Hg) = vgH —VvgHg,
wherevgH = —B_l(drs/dy) , the Sverdrup mass flux, andH = —f_lfs , the Ekman mass flux.

c) Finally, show that the geostrophic mass fluxt , far exceeds the ageostrophic mass flux if the
earth’s radiusa  far exceeds the sdale  of the forcing.

5.5 A perturbation in the geopotential field of a -plahe=( f,+ By ) is given as

_ To,,.. . mPo— P
Q= ?Vsm(kx)sm(ly)[l—costﬁ Dy— plm}, PL<P<py,

where 2d/ are constants ang, 1)  is a horizontal wavenumber vector (total wavenumber
K = Jk™+17).
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a) Assume that the static stabiliy,= - dlgge , Is constant. Find an expressidnrfdhe
case where the pseudo-potential vorticity equgls By at mid-dqum,%( Py + Po) .What s

L=K™" specifically whe_r48i 0.1a,/Ap ,as%umirtgp = Pp—P; = 10° aong = 1 in
m.k.s. units? Usé, =10 s~ and = 10ms

b) In the absence of any other flow, how will this disturbance evolve, according to the quasi-geo-
strophic model?

c) From the “omega equation”, determine the quasi-geostrophic divergent circulation, assuming
w = 0 atbothp = p, and = p; . Inwhat parts of the disturbance would you most expect
precipitation to occur?

d) Using the answers to (b) and (c), determine how the amplitude of vertical particle displace-
ments depends dB . Hint: (b) provides a time scale and (c) provides a velocity scale.



